Respuesta :
distance formula: [tex] \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y{1})^{2}} [/tex]
[tex]\sqrt{(-2-6)^{2}+(8-(-2))} \\ \sqrt{(-8)^{2}+(10)^{2}} \\ \sqrt{64+100} \\ \sqrt{164} = 2\sqrt{41} = 12.8062 = 12.8[/tex]
[tex]\sqrt{(-2-6)^{2}+(8-(-2))} \\ \sqrt{(-8)^{2}+(10)^{2}} \\ \sqrt{64+100} \\ \sqrt{164} = 2\sqrt{41} = 12.8062 = 12.8[/tex]
Distance formula:
[tex] \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]
We are given 2 coordinates:
(-2,8) and (6,-2)
x1,y1 x2,y2
Plug the numbers into the formula:
[tex] \sqrt{(6-(-2))^2+(-2-8)^2} [/tex]
Simplify:
[tex] \sqrt{(8)^2+(-10)^2} [/tex]
8^2=64
-10^2=100
[tex] \sqrt{100+64} [/tex]
[tex] \sqrt{164}=12.806248474865697[/tex]
The question asks to round to the nearest tenth so final answer:
12.8
[tex] \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]
We are given 2 coordinates:
(-2,8) and (6,-2)
x1,y1 x2,y2
Plug the numbers into the formula:
[tex] \sqrt{(6-(-2))^2+(-2-8)^2} [/tex]
Simplify:
[tex] \sqrt{(8)^2+(-10)^2} [/tex]
8^2=64
-10^2=100
[tex] \sqrt{100+64} [/tex]
[tex] \sqrt{164}=12.806248474865697[/tex]
The question asks to round to the nearest tenth so final answer:
12.8