Respuesta :
[tex]\bf \sqrt{97x}\qquad x=20\implies \sqrt{97\cdot 20}\qquad
\begin{cases}
20\implies 2\cdot 2\cdot 5\\
\qquad 2^2\cdot 5
\end{cases}
\\\\\\
\sqrt{97\cdot 2^2\cdot 5}\implies 2\sqrt{97\cdot 5}\implies 2\sqrt{485}[/tex]
Answer with explanation:
The Expression which is equal to ,
[tex]=\sqrt{97 x}[/tex]
in which 97 is Prime Number, and x is a Variable.
So, for further Simplification, x must be a Composite Number, having two Identical Factor.
For, x=5, [tex]=\sqrt{97 x}[/tex] , can not further Simplified.
For, x=10, [tex]=\sqrt{97 x}[/tex] , also can not further Simplified.
For, x=15, [tex]=\sqrt{97 x}[/tex] , can not be further Simplified.
But for, x=20
[tex]=\sqrt{97 \times 20}\\\\=\sqrt{97 \times 2\times 2 \times 5}\\\\=2 \sqrt{97 \times 5}\\\\=2\sqrt{485}[/tex]
The Expression can be further Simplified.
Option D: 20