Respuesta :

[tex]\bf \sqrt{97x}\qquad x=20\implies \sqrt{97\cdot 20}\qquad \begin{cases} 20\implies 2\cdot 2\cdot 5\\ \qquad 2^2\cdot 5 \end{cases} \\\\\\ \sqrt{97\cdot 2^2\cdot 5}\implies 2\sqrt{97\cdot 5}\implies 2\sqrt{485}[/tex]

Answer with explanation:

The Expression which is equal to ,

 [tex]=\sqrt{97 x}[/tex]

in which 97 is Prime Number, and x is a Variable.

So, for further Simplification, x must be a Composite Number, having two Identical Factor.

For, x=5,  [tex]=\sqrt{97 x}[/tex] , can not further Simplified.

For, x=10,  [tex]=\sqrt{97 x}[/tex] , also can not further Simplified.

For, x=15,  [tex]=\sqrt{97 x}[/tex] , can not  be further Simplified.

But for, x=20

 [tex]=\sqrt{97 \times 20}\\\\=\sqrt{97 \times 2\times 2 \times 5}\\\\=2 \sqrt{97 \times 5}\\\\=2\sqrt{485}[/tex]

The Expression can be further Simplified.

Option D: 20