check the picture below
[tex]\bf \textit{parabola vertex form with focus point distance}\\\\
\begin{array}{llll}
(y-{{ k}})^2=4{{ p}}(x-{{ h}}) \\\\
\boxed{(x-{{ h}})^2=4{{ p}}(y-{{ k}})} \\
\end{array}
\qquad
\begin{array}{llll}
vertex\ ({{ h}},{{ k}})\\\\
{{ p}}=\textit{distance from vertex to }\\
\qquad \textit{ focus or directrix}
\end{array}\\\\
-------------------------------\\\\
\begin{cases}
h = 0\\
k = 0\\
p=-1
\end{cases}\implies (x-0)^2=4(-1)(y-0)\implies x^2=-4y
\\\\\\
-\cfrac{1}{4}x^2=y[/tex]