Respuesta :
The expression looks like this: [tex]\left(2p+7\right)\left(3p^2+4p-3\right)[/tex]
First, distribute the parenthesis...
[tex]=2p\cdot \:3p^2+2p\cdot \:4p+2p\left(-3\right)+7\cdot \:3p^2+7\cdot \:4p+7\left(-3\right)[/tex]
There's a rule named minus - plus, which is this: [tex]+\left(-a\right)=-a[/tex]
We are going to apply it...
[tex]=2p\cdot \:3p^2+2p\cdot \:4p-2p\cdot \:3+7\cdot \:3p^2+7\cdot \:4p-7\cdot \:3[/tex]
We then are going to apply the exponent rule, which is this: [tex]\:a^b\cdot \:a^c=a^{b+c}[/tex]
[tex]=6p^3+8p^2-6p+21p^2+28p-21[/tex]
Group like terms.
[tex]=6p^3+8p^2+21p^2-6p+28p-21[/tex]
Add like terms...
[tex]=6p^3+8p^2+21p^2+22p-2[/tex]
[tex]=6p^3+29p^2+22p-21[/tex]
Done!
Have a nice day! :)
First, distribute the parenthesis...
[tex]=2p\cdot \:3p^2+2p\cdot \:4p+2p\left(-3\right)+7\cdot \:3p^2+7\cdot \:4p+7\left(-3\right)[/tex]
There's a rule named minus - plus, which is this: [tex]+\left(-a\right)=-a[/tex]
We are going to apply it...
[tex]=2p\cdot \:3p^2+2p\cdot \:4p-2p\cdot \:3+7\cdot \:3p^2+7\cdot \:4p-7\cdot \:3[/tex]
We then are going to apply the exponent rule, which is this: [tex]\:a^b\cdot \:a^c=a^{b+c}[/tex]
[tex]=6p^3+8p^2-6p+21p^2+28p-21[/tex]
Group like terms.
[tex]=6p^3+8p^2+21p^2-6p+28p-21[/tex]
Add like terms...
[tex]=6p^3+8p^2+21p^2+22p-2[/tex]
[tex]=6p^3+29p^2+22p-21[/tex]
Done!
Have a nice day! :)