Respuesta :

first off, let's start by changing the percentages to decimal formats.... so let's say we need "x" amount of the 6%, or a solute of 0.06 of "x", and "y" amount of the 2% one, for a solute of  0.02 of "y"

[tex]\bf \begin{array}{lccclll} &amount&concentration& \begin{array}{llll} concentrated\\ amount \end{array}\\ &-----&-------&-------\\ \textit{butterfat milk 6\%}&x&0.06&0.06x\\ \textit{butterfat milk 2\%}&y&0.02&0.02y\\ --------&-----&-------&-------\\ mixture&100&0.04&4.00 \end{array} \\\\\\ \begin{cases} x+y=100\implies \boxed{y}=100-x\\ 0.06x+0.02y=4\\ ----------\\ 0.06x+0.02\left( \boxed{100-x} \right)=4 \end{cases}[/tex]

solve for "x", to see how much 6% buttermilk fat will be needed

what about "y"?  well, y = 100 - x