Respuesta :

It's going to be a 3x2. Im assuming its [ 5 10 on the first row, second row would be -2, -4, then the bottom row would be 1, 2] Hope I helped!

Answer:

Therefore, The required product matrix is :

[tex]\begin{bmatrix}5 & 10 \\ -2 & -4\\ 1 &2 \end {bmatrix}[/tex]

Step-by-step explanation:

Dimension of matrix D : 3 × 1

Dimension of matrix E = 1 × 2

Since, The columns of first matrix is equal to rows of second matrix so bith the matrix can be multiplied

And The dimension of the product matrix will be : 3 × 2

The product is :

[tex]\begin{bmatrix}5\times 1 & 5\times 2 \\ -2\times 1 & -2\times 2\\ 1\times 1 & 1\times 2 \end{bmatrix}\\\\\\=\begin{bmatrix}5 & 10 \\ -2 & -4\\ 1 &  2 \end {bmatrix}[/tex]

Therefore, The required product matrix is :

[tex]\begin{bmatrix}5 & 10 \\ -2 & -4\\ 1 &2 \end {bmatrix}[/tex]