contestada

What is the product? x^2-16/2x+8*x^3-2x^2+x/x^2+3x-4
a. x(x-4)(x-1)/2(x+4)
b.x(x-1)/2
c.(x+4)(x-4)/2x(x-1)
d.(x-4)(x-1)/2x(x+4)

Respuesta :

the answer is (a) i just took the test

In order to solve the product of polynomials simplify the numerator and denominator following those steps

we have

[tex](\frac{x^{2}-16}{2x+8})*( \frac{x^{3}-2x^{2}+x}{x^{2}+3x-4})[/tex]

Step 1

Using difference of squares and complete squares in the numerator

[tex]({x^{2}-16})*({x^{3}-2x^{2}+x)=[(x+4)(x-4)]*[x(x^{2}-2x+1)][/tex]

[tex][(x+4)(x-4)]*[x(x^{2}-2x+1)]=[(x+4)(x-4)]*[x(x-1)^{2}][/tex]

Step 2

Complete squares in the denominator

[tex](2x+8)*(x^{2}+3x-4)=[2(x+4)]*[(x+4)(x-1)][/tex]

Step 3

Substitute

[tex]\frac{[(x+4)(x-4)]*[x(x-1)^{2}]}{[2(x+4)]*[(x+4)(x-1)]}[/tex]

[tex]=\frac{x(x-4)(x-1)}{2(x+4)}[/tex]

therefore

the answer is the option A

[tex]\frac{x(x-4)(x-1)}{2(x+4)}[/tex]