Respuesta :

frxart
x^2 - 4x -12 ≠ 0
Let's say it's equal to 0
Δ = b^2 -4ac
(-4)^2 -4(-12)
16 + 48
64

x1, x2 = -b ± √Δ / 2a
-(-4) ± √64 / 2
4 ± 8 / 2
x1 = 4+8/2, x2 = 4-8/2
x1 = 12/2 = 6, x2 = -4/2 = -2

So x can't be 6 or -2!

Answer:

The restrictions on the variable x in the expression [tex]\frac{x^2+3x+2}{x^2-4x-12}[/tex] is [tex]x\neq6[/tex]                          

Step-by-step explanation:

Given : Expression [tex]\frac{x^2+3x+2}{x^2-4x-12}[/tex]

To find : Identify the restrictions on the variable ?

Solution :

First we simplify the expression,

[tex]\frac{x^2+3x+2}{x^2-4x-12}[/tex]

Applying middle term split to factor,

[tex]=\frac{x^2+2x+x+2}{x^2-6x+2x-12}[/tex]

[tex]=\frac{x(x+2)+1(x+2)}{x(x-6)+2(x-6)}[/tex]

[tex]=\frac{(x+2)(x+1)}{(x-6)(x+2)}[/tex]

Cancel the like term in Nr. and Dr.,

[tex]=\frac{x+1}{x-6}[/tex]

Now, To find restriction for x set each polynomial or term in the denominator to cannot equal to 0.

So, Put denominator = 0

[tex]x-6=0[/tex]

[tex]x=6[/tex]

Which means the restriction is [tex]x\neq6[/tex]

Therefore, The restrictions on the variable x in the expression [tex]\frac{x^2+3x+2}{x^2-4x-12}[/tex] is [tex]x\neq6[/tex]