[tex]A = 4 \pi R x^{2} [/tex]
The question does not give you the radius so we have to get it from circumference
Circumference = [tex] \pi [/tex] (diameter)
Divide each side by [tex] \pi [/tex] : Diameter = [tex] \frac{C}{ \pi } [/tex]
Radius = 1/2 diameter : [tex]R = \frac{C}{2 \pi } [/tex]
Area = [tex]4 \pi R^{2} [/tex]
[tex]4 \pi ( \frac{C}{2 \pi })^{2} =
4 \pi \frac{(C) ^{2} }{4 \pi ^{2} } [/tex]
Divide top & bottom by [tex]4 \pi [/tex] : A= [tex] \frac{(C) ^{2} }{ \pi } [/tex]
Circumference = 37.68 units
[tex]Area = \frac{(37.68)^{2} square units}{ \pi } = 451.93 square units[/tex]
451.93 square units