Answer:
[tex]6u^{2}+4u+6=0[/tex]
Step-by-step explanation:
we have
[tex]6(x-5)^{4}+4(x-5)^{2}+6=0[/tex]
Let
[tex]u=(x-5)^{2}[/tex]
remember that
if [tex]u=(x-5)^{2}[/tex]
then
[tex]u^{2}=(x-5)^{4}[/tex]
substitute
[tex]6u^{2}+4u+6=0[/tex] -------> quadratic equation
Answer:
the answer is (B) on ed2020
Step-by-step explanation:
B- 6u2 + 4u + 6 = 0, where u = (x – 5)2