[tex]\bf \begin{cases}
V_c=\textit{cylinder's volume}\\
V_h=\textit{hemisphere's volume}\\
A_c=\textit{area of the cylinder}\\
A_h=\textit{area of the hemisphere}
\end{cases}
\\\\\\
V_c+V_h=6000\implies (\pi r^2h)+\left( \frac{2\pi r^3}{3} \right)
\\\\\\
6000=\cfrac{3\pi r^2h+2\pi r^3}{3}\implies 18000-2\pi r^3=3\pi r^2h
\\\\\\
\boxed{\cfrac{6000}{\pi r^2}-\cfrac{2r}{3}=h}
\\\\
-------------------------------\\\\[/tex]
[tex]\bf A_c=2\pi rh+2\pi r^2\implies A_c=2\pi r\left(\cfrac{6000}{\pi r^2}-\cfrac{2r}{3} \right)+2\pi r^2
\\\\\\
A_c=\cfrac{12000}{r}-\cfrac{4\pi r^2}{3}\impliedby \textit{say it has a cost of 1, so stays the same}\\\\
-------------------------------\\\\
A_h=2\pi r^2\impliedby \textit{has a cost of 8 times the cylinder's}
\\\\\\
A_h=16\pi r^2\\\\
-------------------------------\\\\[/tex]
[tex]\bf \textit{total cost is }A_c+A_h
\\\\\\
\cfrac{12000}{r}-\cfrac{4\pi r^2}{3}+16\pi r^2\implies \cfrac{12000}{r}-\cfrac{4\pi r^2}{3}+\cfrac{48\pi r^2}{3}
\\\\\\
\boxed{C(r)=\cfrac{12000}{r}+\cfrac{44\pi r^2}{3}}[/tex]