Respuesta :

I'm assuming you mean [tex] \sqrt{x+3}+4=6 [/tex]
First, isolate the radical so you have [tex] \sqrt{x+3} =6-4[/tex]
[tex] \sqrt{x+3} =2[/tex]
Then, square both sides [tex] x+3=2^{2} [/tex]
[tex]x+3=4[/tex]
[tex]x=1[/tex]

Answer:

x=1 and is not extraneous.

Step-by-step explanation:

We have been given the equation:

[tex]\sqrt{x+3}+4=6[/tex]

collect terms without square root so, we will shift 4 on the right hand side of the equation.

Hence, equation becomes:

[tex]\sqrt{x+3}=6-4[/tex]

[tex]\sqrt{x+3}=2[/tex]

Now, squaring both sides so, as to remove square root we get:

[tex]{x+3}=4[/tex]

[tex]x=1[/tex]

At x=1 is not extraneous because extraneous is the point where we get zero at that point in a function.