Respuesta :

the exact lenght of arc AB=

[tex]=2. \pi .4.\frac{45}{360} \quad m \\ \\ \\ = \pi \quad m\\ \\ GoodLuck:)[/tex]

Answer:

The exact length of arc is π m

Step-by-step explanation:

In the given figure, we need to find length of arc AB

Formula:

[tex]\theta(\text{In radian})=\dfrac{\text{Length of arc}}{\text{Radius}}[/tex]

First we will change degree to radian

[tex]Radian=\dfrac{degree}{180^\circ}\times \pi[/tex]

[tex]Radian=\dfrac{45^\circ}{180^\circ}\times \pi=\dfrac{\pi}{4}[/tex]

Radius (r) = 4 m

[tex]\dfrac{\pi}{4}=\dfrac{l}{4}[/tex]

[tex]L=\pi[/tex]

The length of arc AB is π m

Hence, The exact length of arc is π m