Use the divergence theorem to calculate the surface integral s f · ds ; that is, calculate the flux of f across s. (give your answer correct to at least three decimal places.) f(x,y,z) = x3 i + 2xz2 j + 3y2z k s is the surface of the solid bounded by the paraboloid z = 4 ? x2 ? y2 and the xy-plane

Respuesta :

[tex]\mathbf F(x,y,z)=x^3\,\mathbf i+2xz^2\,\mathbf j+3y^2z\,\mathbf k[/tex]

The divergence of the vector field is given by

[tex]\nabla\cdot\mathbf F=\dfrac{\partial x^3}{\partial x}+\dfrac{\partial 2xz^2}{\partial y}+\dfrac{\partial 3y^2z}{\partial z}=3x^2+3y^2[/tex]

By the divergence theorem, the integral over the surface [tex]S[/tex] is equivalent to the triple integral over the region bounded by [tex]S[/tex] (call it [tex]R[/tex]).

[tex]\displaystyle\iint_S\mathbf F\cdot\mathrm dS=\iiint_R\nabla\cdot\mathbf F\,\mathrm dV[/tex]

The triple integral can be precisely written as

[tex]\displaystyle\iiint_R\nabla\cdot\mathbf F\,\mathrm dV=3\int_{x=-2}^{x=2}\int_{y=-2}^{y=2}\int_{z=0}^{z=4-x^2-y^2}(x^2+y^2)\,\mathrm dz\,\mathrm dy\,\mathrm dx[/tex]

which is easy enough to evaluate directly. You should find that its value is [tex]\dfrac{512}{15}[/tex].