Respuesta :

Imagine it as a right angled triangle, and you can use Pythagoras' theorem to work it out.

Difference of x values (length of x) = -8 - -2 = -6
Different of y values (length of y) = 4 - - 4 = 8

AB = [tex] \sqrt{ -6^{2} + 8^{2} } = 10[/tex]

Answer:

The length of AB is [tex]10[/tex]

Step-by-step explanation:

Given two points in the plane

[tex]A=(a1,a2)[/tex] and [tex]B=(b1,b2)[/tex]

The distance between this two points is

[tex]d(A,B)=\sqrt{(a1-b1)^{2}+(a2-b2)^{2}}[/tex] or

[tex]d(B,A)=\sqrt{(b1-a1)^{2}+(b2-a2)^{2}}[/tex]

Now for [tex]A=(-2,-4)[/tex] and [tex]B=(-8,4)[/tex]

The distance is

[tex]d(A,B)=\sqrt{(-2-(-8))^{2}+(-4-4)^{2}}=\sqrt{6^{2}+(-8)^{2}}=\sqrt{36+64}=\sqrt{100}=10[/tex]

The equation I used derives from operator norm.

Given a point [tex]C=(c1,c2)[/tex] in the plane, the distance between C and (0,0) is

[tex]||C||=\sqrt{(c1)^{2}+(c2)^{2}}[/tex]

[tex]||.||[/tex] is the operator norm.

To find the distance between A and B we apply [tex]||.||[/tex] to the diference [tex](A-B)[/tex] or [tex](B-A)[/tex] in order to obtain the distance equation [tex]d(A,B)[/tex] or [tex]d(B,A)[/tex]

Notice that [tex]d(A,B)=d(B,A)[/tex]