Respuesta :
Answer : The correct option is, [tex]4.52\times 10^{-5}M[/tex]
Explanation :
The balanced equilibrium reaction will be,
[tex]Pb(IO_3)_2\rightleftharpoons Pb^{2+}+2IO_3^-[/tex]
The expression for solubility constant for this reaction will be,
[tex]K_{sp}=[Pb^{2+}][IO_3^-]^2[/tex]
Let the solubility will be, 's'
[tex]K_{sp}=(s)\times (2s)^2[/tex]
[tex]K_{sp}=(4s)^3[/tex]
Now put the value of [tex]K_[sp}[/tex] in this expression, we get the solubility of Lead(II) iodate.
[tex]3.69\times 10^{-13}=(4s)^3[/tex]
[tex]s=4.52\times 10^{-5}M[/tex]
Therefore, the solubility of Lead(II) iodate is, [tex]4.52\times 10^{-5}M[/tex]