What is the simplified form of 4x^2-25 over 2x-5
2x − 5, with the restriction x ≠ −five over 2
2x + 5, with the restriction x ≠ five over 2
2x − 5, with the restriction x ≠ five over 2
2x + 5, with the restriction x ≠ −five over 2

Respuesta :

[tex] \cfrac{4x^2-25}{2x-5} \\2x-5 \neq 0; \ \ 2x \neq 5; \ \ \boxed { x \neq \frac{5}{2} } \\ \\ \cfrac{4x^2-25}{2x-5}= \cfrac{(2x-5)(2x+5)}{(2x-5)}=2x+5[/tex]

Answer B.

Answer:

Option B

Step-by-step explanation:

We have to find the simplified form of the given expression

[tex]\frac{4x^{2}-25 }{(2x-5)}[/tex]

We will factorize the numerator first.

4x² - 25 = (2x)² - 5²

            = (2x-5) (2x+5)     [ since a² - b² = ( a+b ) ( a-b ) ]

Now we divide it by denominator (2x - 5)

[tex]\frac{(2x-5)(2x+5)}{(2x-5)}[/tex]

= ( 2x+5 ) with restriction x ≠ 5/2

Option B is the answer.