Respuesta :
[tex] \cfrac{4x^2-25}{2x-5} \\2x-5 \neq 0; \ \ 2x \neq 5; \ \ \boxed { x \neq \frac{5}{2} } \\ \\ \cfrac{4x^2-25}{2x-5}= \cfrac{(2x-5)(2x+5)}{(2x-5)}=2x+5[/tex]
Answer B.
Answer B.
Answer:
Option B
Step-by-step explanation:
We have to find the simplified form of the given expression
[tex]\frac{4x^{2}-25 }{(2x-5)}[/tex]
We will factorize the numerator first.
4x² - 25 = (2x)² - 5²
= (2x-5) (2x+5) [ since a² - b² = ( a+b ) ( a-b ) ]
Now we divide it by denominator (2x - 5)
[tex]\frac{(2x-5)(2x+5)}{(2x-5)}[/tex]
= ( 2x+5 ) with restriction x ≠ 5/2
Option B is the answer.