Respuesta :

Vertex form should be : y = (x+1)^2 - 2, where the vertex is (-1,-2)

Answer:

[tex]y=(x+1)^2-2[/tex]

Step-by-step explanation:

General polynomial formula of a quadratic equation

[tex]ax^2+bx+c[/tex]

Equation [tex]y= x^2+2x-1[/tex]

[tex]a= 1\\ b=2\\ c=-1[/tex]

The formula to find the x coordinate of the vertex is

[tex]V_{x}= \frac{-b}{2a}[/tex]

[tex]V_{x}=\frac{-2}{2(1)} \\ V_{x}= -1[/tex]

Now to find the y coordinate of the vertex we substitute the found value of the x coordinate in [tex]y= x^2+2x-1[/tex]

[tex]y= (-1)^2+2(-1)-1 \\ y= 1-2-1\\ y=-2[/tex]

The general vertex formula for any quadratic function is

[tex]y= a(x-x_{v})^2+y_{v}[/tex]

Replace

[tex]y= 1(x-(-1))^2+(-2)\\ y=(x+1)^2-2[/tex]