tzack
contestada

What is the length of EF in the right triangle below?
a: 22
b: 505
c. 217
d. Square root 17
e: square root 505
f: 7

What is the length of EF in the right triangle below a 22 b 505 c 217 d Square root 17 e square root 505 f 7 class=

Respuesta :

Answer:

\sqrt(217)

Step-by-step explanation:

(19)^2=(12)^2

361 - 144 + 217

\sqrt(217)


Answer:

[tex]\sqrt{217}units[/tex]

Step-by-step explanation:

Given : A right angled triangle EFD

           Hypotenuse = ED=19 units

           Base = DF =12 units

           Perpendicular = EF

Solution:

To find length of EF we will use Pythagorean Theorem:

[tex](Hypotenuse)^{2}=(Perpendicular)^{2}+(Base)^{2}[/tex]

[tex]ED^{2}=EF^{2}+DF^{2}[/tex]

[tex]19^{2}=EF^{2}+12^{2}[/tex]

[tex]361=EF^{2}+144[/tex]

[tex]361-144=EF^{2}[/tex]

[tex]217=EF^{2}[/tex]

[tex]\sqrt{217} =EF[/tex]

Thus the length of EF is [tex]\sqrt{217}units[/tex]