Respuesta :

[tex] 6x^2 + 432 = 0\\ x^2+72=0\\ x^2=-72[/tex]

No real solutions.

Complex solutions
[tex]x=-\sqrt{-72} \vee x=\sqrt{-72}\\ x=-6\sqrt 2 i \vee x=6\sqrt 2 i[/tex]

Answer:

The possible values of  x are:

                 [tex]x=6\sqrt{2}i\ and\ x=-6\sqrt{2}i[/tex]

Step-by-step explanation:

We are given a quadratic equation in terms of variable ''x'' as:

                [tex]6x^2+432=0[/tex]

This equation could also be written as:

[tex]6(x^2+72)[/tex]

Since we take out 6 common both the terms as both the terms are a multiple of ''6''.

Hence, we get:

[tex]x^2+72=0\\\\i.e.\\\\x^2=-72\\\\\\i.e.\\\\\\x=\pm \sqrt{-72}\\\\\\i.e.\\\\\\x=\pm 6\sqrt{2}i[/tex]

               Hence, the possible values of x are:

            [tex]x=6\sqrt{2}i\ and\ x=-6\sqrt{2}i[/tex]