The trick here is to use an appropriate substitution. Let u=a^3.
Then du/da=3a^2, and du=3a^2da.
We can now make two key substitutions: In (3a^2)da/(1+a^6), replace 3a^2 by du and a^6 by u^2.
Then we have the integral of du/(1+u^2).
Integrating, we get arctan u + c. Substituting a^3 for u, the final result (the integral in question) is arctan a^3 + c.
Check this by differentiation. if you find the derivative with respect to a of arctan a^3 + c, you MUST obtain the result 3a^2/(1+a^6).