Respuesta :
Factor the numerator and denominator then simplify.
6x^2 - 54 6(x^2 - 9) 6(x + 3)(x - 3) 6(x - 3)
-------------- = ------------- = ------------------ = ------------
5x^2 + 15x 5x(x + 3) 5x(x + 3) 5x
6(x - 3)
----------
5x
6x^2 - 54 6(x^2 - 9) 6(x + 3)(x - 3) 6(x - 3)
-------------- = ------------- = ------------------ = ------------
5x^2 + 15x 5x(x + 3) 5x(x + 3) 5x
6(x - 3)
----------
5x
Answer:
The simplified form of the expression is [tex]\frac{6x^2-54}{5x^2+15x}=\frac{6(x-3)}{5x}[/tex]
Step-by-step explanation:
Given : Expression [tex]\frac{6x^2-54}{5x^2+15x}[/tex]
To find : What is the simplified form of this rational expression?
Solution :
Step 1 - Write the expression
[tex]=\frac{6x^2-54}{5x^2+15x}[/tex]
Step 2 - Factor the numerator and denominator,
[tex]=\frac{6(x^2-9)}{5x(x+3)}[/tex]
[tex]=\frac{6(x-3)(x+3)}{5x(x+3)}[/tex]
Step 3 - Cancel the factor (x+3) from numerator and denominator,
[tex]=\frac{6(x-3)}{5x}[/tex]
Therefore, The simplified form of the expression is [tex]\frac{6x^2-54}{5x^2+15x}=\frac{6(x-3)}{5x}[/tex]