Respuesta :
Surface area of sphere = [tex]4 \pi r^{2} [/tex]
Volume of sphere = [tex] \frac{4}{3} \pi r^{3} [/tex]
[tex]100 \pi =4 \pi r^{2} [/tex]
Therefore [tex]r = 5[/tex]
Volume = [tex] \frac{4}{3} \pi *5^{3} = \frac{500 \pi }{3} [/tex]
Volume of sphere = [tex] \frac{4}{3} \pi r^{3} [/tex]
[tex]100 \pi =4 \pi r^{2} [/tex]
Therefore [tex]r = 5[/tex]
Volume = [tex] \frac{4}{3} \pi *5^{3} = \frac{500 \pi }{3} [/tex]
Answer:
[tex]V=\frac{500}{3}\ \pi(ft^{3})[/tex]
Step-by-step explanation:
Hello.
to find the volume of a sphere we must know its radius,
we don't know the radius but we have the area
[tex]A=4\pi r^{2} \\ \\isolating\ r\\\\A=4\pi r^{2}\\r=\sqrt{\frac{A}{4\pi } } \\r=\sqrt{\frac{100\ ft^{2} }{4\pi}} \\\\ r= \sqrt{25\ ft^{2} }\\ r=5\ ft\\[/tex]
Now, replacing this value in the volume equation
[tex]V=\frac{4\pi r^{3} }{3} \\V=\frac{4\pi\ (5\ ft)^{3} }{3}\\ V=\frac{4\pi\ (125 ft^{3}) }{3}\\V=\frac{500}{3}\ \pi (ft^{3})\\\\\\[/tex]
have a great day