Check all of the numbers that are potential rational roots of f(x) = x4 – 2x3 + 5x2 – 7x + 9.
a ±1
b ±3
c ±9
d 1/3
e 1/9
f 9/2

Respuesta :

Using Rational root theorem

For any polynomial , ax³ + b x² + c x + d= 0,

To find the possible root , we convert the cubic equation as follows:

⇒[tex]x^3 +\frac{bx^2}{a} +\frac{cx}{a}+\frac{d}{a}=0[/tex]

So, the roots will be, [tex]\pm1, \pm d, \pm \frac{1}{a},\pm \frac{d}{a}[/tex].

Now , the given polynomial having highest degree 4 is :

[tex]f(x) = x^4 - 2x^3 + 5x^2 - 7x + 9.[/tex]

Constant Term =9

So, Possible Roots are = All integral factor of 9=[tex]\pm 1, \pm 3, \pm 9[/tex]

Option (a) [tex]\pm 1[/tex] , Option (b)[tex]\pm 3[/tex]  ,and Option (c)[tex]\pm 9[/tex] are correct options.    


Answer:

a, b, and c

Step-by-step explanation: