Respuesta :
f(x)=(3x^2+2x-5)/(x-4)
f(x)=(3x+5)(x-1)/(x-4)
x-4|(3x^2+2x-5)
(x-4)3x
3x^2+2x-5-(3x^2-12x)
(x-4)3x+14
14x-5-(14x-56)
51
Oblique=3x+14
f(x)=(3x+5)(x-1)/(x-4)
x-4|(3x^2+2x-5)
(x-4)3x
3x^2+2x-5-(3x^2-12x)
(x-4)3x+14
14x-5-(14x-56)
51
Oblique=3x+14
Answer:
Oblique asymptote at y = 3x+14
Step-by-step explanation:
[tex]f(x)= \frac{3x^2+2x-5}{x-4}[/tex]
The degree of numerator is 2
degree of denominator is 1
When the degree of numerator is greater than the degree of denominator by 1 then there is a slant asymptote
To find slant asymptote we divide by long division
3x +14
-------------------------------
x-4 3x^2+ 2x -5
3x^2-12x
---------------------------- (subtract)
+14x - 5
14x - 56
-------------------------------(subtract)
51
Oblique asymptote at y = 3x+14