Respuesta :
I'm going to assume that you accidentally missed a set of parentheses and that the expression is [tex](2a^{-3} b^{2})^3[/tex]
Raise 2, [tex]a^{-3}[/tex], and [tex]b^2[/tex] to the third power:
[tex]2^3(a^{-3})^3(b^2)^3[/tex]
When a variable raised to a power is raised to another power, the exponents are multiplied:
[tex]8a^{-9}b^{6}[/tex]
Negative powers are the positive power in the denominator:
[tex]\frac{8b^6}{a^{9}} [/tex]
Therefore, the answer is the second option.
Raise 2, [tex]a^{-3}[/tex], and [tex]b^2[/tex] to the third power:
[tex]2^3(a^{-3})^3(b^2)^3[/tex]
When a variable raised to a power is raised to another power, the exponents are multiplied:
[tex]8a^{-9}b^{6}[/tex]
Negative powers are the positive power in the denominator:
[tex]\frac{8b^6}{a^{9}} [/tex]
Therefore, the answer is the second option.
[tex] (2a^{-3}b^2)^3 \\ \\ = 2a^{-9}b^6 \\ \\ = { \frac{b^6}{2a^9} } [/tex]
[tex] If\ your\ question\ mean\ (2a^{-3}12b^2)^3 \\ \\ \\ \\ (2a^{-3}12b^2)^3 \\ \\ =2a^{-9}12b^6 \\ \\ ={ \frac{12b^6}{2a^9} } \\ \\ ={ \frac{6b^6}{a^9} } [/tex]
[tex] If\ your\ question\ mean\ (2a^{-3}12b^2)^3 \\ \\ \\ \\ (2a^{-3}12b^2)^3 \\ \\ =2a^{-9}12b^6 \\ \\ ={ \frac{12b^6}{2a^9} } \\ \\ ={ \frac{6b^6}{a^9} } [/tex]