What is the equation of the quadratic graph with a focus of (4,0) and a directrix of y=10?

Answer:
The correct option is 1.
Step-by-step explanation:
The general equation of a parabola is
[tex](x-h)^2=4p(y-k)[/tex]
Where, (h,k+p) is focus and y=k-p is directrix .
The focus of parabola is (4,0).
[tex](h,k+p)=(4,0)[/tex]
[tex]h=4[/tex]
[tex]k+p=0[/tex] .... (1)
The directrix of parabola is y=10.
[tex]k-p=10[/tex] .... (2).
Add equation (1) and (2).
[tex]2k=10[/tex]
[tex]k=5[/tex]
[tex]p=-5[/tex]
The equation of the parabola is
[tex](x-4)^2=4(-5)(y-5)[/tex]
[tex](x-4)^2=-20(y-5)[/tex]
[tex]-\frac{1}{20}(x-4)^2=(y-5)[/tex]
[tex]-\frac{1}{20}(x-4)^2+5=y[/tex]
[tex]f(x)=-\frac{1}{20}(x-4)^2+5[/tex]
Therefore option 1 is correct.