Respuesta :

Mehek
The exponent is only on x, so the 5 stays out. Now when you convert fractions exponents into radicals, they become this: 

[tex]x^{\dfrac{m}{n}} = \sqrt[n]{x^m} [/tex]

So [tex]5x^{\dfrac{4}{9}} = 5 \sqrt[9]{x^4} [/tex]

Which would be option C).

[tex] \mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^m}=a^{\frac{m}{n}} [/tex]

[tex] \sqrt[9]{x^4}=x^{\frac{4}{9}} [/tex]

[tex] 5\sqrt[9]{x^4}=5x^{\frac{4}{9}} [/tex]

Thus

[tex] 5x^{\frac{4}{9}}=5(x^4)^{1/9} [/tex]

[tex] =5\sqrt[9]{x^4} [/tex]