The function g(n) = n2 − 20n + 95 represents a parabola.

Part A: Rewrite the function in vertex form by completing the square. Show your work. (6 points)

Part B: Determine the vertex and indicate whether it is a maximum or a minimum on the graph. How do you know? (2 points)

Part C: Determine the axis of symmetry for g(n). (2 points)

Respuesta :

[tex]n^2 - 20n + 95=\\ n^2-20n+100-5=\\ (n-10)^2-5[/tex]

Vertex - [tex](10,-5)[/tex]
It's a minimum, because [tex]a\ \textgreater \ 0[/tex]

The axis of symetry is x=h where h is the x-coordinate of the vertex.
So it's [tex]x=10[/tex]

Answer:

[tex]g(n)=(n-10)^2-5[/tex]

The vertex will be at [tex](10, -5)[/tex]

[tex]x=10[/tex]

Step-by-step explanation:

The given quadratic function is,

[tex]g(n) = n^2-20n+95[/tex]

[tex]=n^2-2\cdot n\cdot 10+95[/tex]

[tex]=(n^2-2\cdot n\cdot 10+10^2)-10^2+95[/tex]

[tex]=(n-10)^2-100+95[/tex]

[tex]=(n-10)^2-5[/tex]

The vertex form is,

[tex]g(n)=(n-10)^2-5[/tex]

The vertex will be at [tex](10, -5)[/tex]

As the leading coefficient of [tex]g(n) = n^2-20n+95[/tex] is positive, so the parabola will open upwards. Hence, at the vertex the value will be minimum.

The axis of symmetry will be,

[tex]x=-\dfrac{b}{2a}[/tex]

Putting the values,

[tex]x=-\dfrac{-20}{2\times 1}=10[/tex]

Ver imagen InesWalston