Respuesta :

Answer:

x = 7.5

Step-by-step explanation:

To find the annual interest rate (x%), we can use the compound interest formula:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Compound Interest Formula}}\\\\A=P\left(1+\dfrac{r}{n}\right)^{nt}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$A$ is the final amount.}\\\phantom{ww}\bullet\;\;\textsf{$P$ is the principal amount.}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the interest rate (in decimal form).}\\\phantom{ww}\bullet\;\;\textsf{$n$ is the number of times interest is applied per year.}\\\phantom{ww}\bullet\;\;\textsf{$t$ is the time (in years).}\end{array}}[/tex]

In this case:

  • A = £28712.59
  • P = £20000
  • n = 1 (annual interest)
  • t = 5 years

Substitute the given values into the formula:

[tex]28712.59=20000\left(1+\dfrac{r}{1}\right)^{1 \times 5}[/tex]

[tex]28712.59=20000\left(1+r\right)^{5}[/tex]

Divide both sides of the equation by 20000:

[tex]\dfrac{28712.59}{20000}=\left(1+r\right)^{5}[/tex]

Now, take the fifth root of both sides:

[tex]\sqrt[5]{\dfrac{28712.59}{20000}}=1+r[/tex]

Subtract 1 from both sides:

[tex]r=\sqrt[5]{\dfrac{28712.59}{20000}}-1[/tex]

Compute the value of r:

[tex]r=0.0750000260...[/tex]

To convert into a percentage, multiply r by 100:

[tex]r = 7.500000260...\%[/tex]

[tex]r = 7.5\%\;(\sf nearest\;tenth)[/tex]

So, the annual interest rate (x%) is approximately 7.5%, which means the value of x is 7.5.