The perimeter of a rectangle is the sum of its sides. Find the perimeter of a rectangle with each length and width. All measurements are given in centimeters.

1. Width:3x+4
length:x-14

2. Width: x+6
Length: -x^2+30

3. Width: -x+15
Length: 10x-42

Respuesta :

Answer:

[tex]\textsf{1)}\quad 8x - 20[/tex]

[tex]\textsf{2)}\quad -2x^2 + 2x + 72[/tex]

[tex]\textsf{3)}\quad 18x - 54[/tex]

Step-by-step explanation:

The perimeter of a rectangle is calculated by adding the lengths of all four sides.

In a rectangle, opposite sides are equal in length. Therefore, the perimeter (P) is the sum of two widths (W) and two lengths (L), expressed by the formula:

[tex]P=2(W+L)[/tex]

To find the perimeter of each rectangle, substitute the given width and length into the perimeter formula.

[tex]\hrulefill[/tex]

Question 1

Given width and length:

[tex]W = 3x+4[/tex]

[tex]L=x-14[/tex]

Substitute the given width and length into the perimeter formula and simplify:

[tex]\begin{aligned}P&=2(3x+4+x-14)\\\\P&=2(4x-10)\\\\P&=8x-20\end{aligned}[/tex]

Therefore, the perimeter of the rectangle is (8x - 20) centimeters.

[tex]\hrulefill[/tex]

Question 2

Given width and length:

[tex]W = x+6[/tex]

[tex]L=-x^2+30[/tex]

Substitute the given width and length into the perimeter formula and simplify:

[tex]\begin{aligned}P&=2(x+6-x^2+30)\\\\P&=2(-x^2+x+36)\\\\P&=-2x^2+2x+72\end{aligned}[/tex]

Therefore, the perimeter of the rectangle is (-2x² + 2x + 72) centimeters.

[tex]\hrulefill[/tex]

Question 3

Given width and length:

[tex]W = -x+15[/tex]

[tex]L=10x-42[/tex]

Substitute the given width and length into the perimeter formula and simplify:

[tex]\begin{aligned}P&=2(-x+15+10x-42)\\\\P&=2(9x-27)\\\\P&=18x-54\end{aligned}[/tex]

Therefore, the perimeter of the rectangle is (18x - 54) centimeters.

Answer:

To find the perimeter of a rectangle, you can use the formula:

Perimeter= 2 × ( length + width )

Now, let's find the perimeter for each given rectangle:

1. Width: 3x+4, Length: x-14

  • The perimeter is:

    2 × (( x − 14) + (3x + 4))

     = 2 × (4x − 10)

     = 8x − 20

2. Width: x+6, Length: -x^2+30

  • The perimeter is:

    2 × ((−x² + 30) + (x + 6))

      = 2 × (−x² + x + 36)

       = −2x ² + 2x + 72

3. Width: -x+15, Length: 10x-42

  • The perimeter is:

     2 × (( 10x − 42) + ( −x + 15 ))

      = 2 × ( 9x − 27)

       = 18x −54

Therefore, the perimeters of the given rectangles are:

  1. 8x - 20 centimeters
  2. -2x^2 + 2x + 72 centimeters
  3. 18x - 54 centimeters

Step-by-step explanation: