Respuesta :

Answer:

AC ≈ 13.3 cm

Step-by-step explanation:

AC is the perpendicular bisector of DB , then

DE = EB = [tex]\frac{1}{2}[/tex] DB = [tex]\frac{1}{2}[/tex] × 12 = 6

Using Pythagoras' identity in right triangle ADE

AE² + ED² = AD²

AE² + 6² = 8²

AE² + 36 = 64 ( subtract 36 from both sides )

AE² = 28 ( take the square root of both sides )

[tex]\sqrt{AE^2}[/tex] = [tex]\sqrt{28}[/tex]

AE ≈ 5.3 cm ( to the nearest tenth )

Using Pythagoras' identity in right triangle CDE

EC² + ED² = CD²

EC² + 6² = 10²

EC² + 36 = 100 ( subtract 36 from both sides )

EC² = 64 ( take the square root of both sides )

[tex]\sqrt{EC^2}[/tex] = [tex]\sqrt{64}[/tex]

EC = 8

Then

AC = AE + EC = 5.3 + 8 = 13.3 cm