Respuesta :

Answer:

Step-by-step explanation:

Let's simplify the given expression \( (x-y)(x+y) + (y+z)(y-z) + (z-x)^2 \):

1. Expand \((x-y)(x+y)\):

  \[ (x-y)(x+y) = x^2 - xy + xy - y^2 = x^2 - y^2 \]

2. Expand \((y+z)(y-z)\):

  \[ (y+z)(y-z) = y^2 - z^2 \]

3. Expand \((z-x)^2\):

  \[ (z-x)^2 = z^2 - 2zx + x^2 \]

Now, substitute these results back into the original expression:

\[ (x-y)(x+y) + (y+z)(y-z) + (z-x)^2 = x^2 - y^2 + y^2 - z^2 + z^2 - 2zx + x^2 \]

Combine like terms:

\[ x^2 - y^2 + y^2 - z^2 + z^2 - 2zx + x^2 = x^2 + x^2 - y^2 + y^2 - z^2 + z^2 - 2zx \]

Simplify further:

\[ 2x^2 - 2zx - y^2 + z^2 \]

So, \( (x-y)(x+y) + (y+z)(y-z) + (z-x)^2 \) simplifies to \( 2x^2 - 2zx - y^2 + z^2 \).