In a continuous series the third quartile is two times the first quartile. If the first quartile is 24 find the third quartile and quartile deviation

Respuesta :

Step-by-step explanation:

If the first quartile (Q1) is given as 24, and it's mentioned that the third quartile (Q3) is two times the value of the first quartile, we can determine the value of Q3.

Given: First quartile (Q1) = 24

According to the information provided, the third quartile (Q3) is two times the value of the first quartile:

\[ Q3 = 2 \times Q1 \]

Substitute the value of Q1:

\[ Q3 = 2 \times 24 = 48 \]

Therefore, the third quartile (Q3) is 48.

Now, to find the quartile deviation:

\[ \text{Quartile Deviation} = \frac{Q3 - Q1}{2} \]

Substitute the values of Q3 and Q1:

\[ \text{Quartile Deviation} = \frac{48 - 24}{2} = \frac{24}{2} = 12 \]

Therefore, the quartile deviation is 12.