Answer:
Let's represent the given compound inequality mathematically:
\[1.5b + 1.5 \geq 2.85 \ \text{or} \ 1.2b - 1.17 < 1.11\]
Now, solve each part separately:
1. \(1.5b + 1.5 \geq 2.85\):
\[1.5b \geq 2.85 - 1.5\]
\[1.5b \geq 1.35\]
\[b \geq \frac{1.35}{1.5}\]
\[b \geq 0.9\]
2. \(1.2b - 1.17 < 1.11\):
\[1.2b < 1.11 + 1.17\]
\[1.2b < 2.28\]
\[b < \frac{2.28}{1.2}\]
\[b < 1.9\]
So, the solution to the compound inequality is \(b \geq 0.9\) or \(b < 1.9\).