Respuesta :

Answer:

Let's represent the given compound inequality mathematically:

\[1.5b + 1.5 \geq 2.85 \ \text{or} \ 1.2b - 1.17 < 1.11\]

Now, solve each part separately:

1. \(1.5b + 1.5 \geq 2.85\):

\[1.5b \geq 2.85 - 1.5\]

\[1.5b \geq 1.35\]

\[b \geq \frac{1.35}{1.5}\]

\[b \geq 0.9\]

2. \(1.2b - 1.17 < 1.11\):

\[1.2b < 1.11 + 1.17\]

\[1.2b < 2.28\]

\[b < \frac{2.28}{1.2}\]

\[b < 1.9\]

So, the solution to the compound inequality is \(b \geq 0.9\) or \(b < 1.9\).