The graph below represents which system of inequalities? graph of two infinite lines that intersect at a point. One line is solid and goes through the points 0, 2, negative 2, 0 and is shaded in below the line. The other line is dashed, and goes through the points 0, 6, 3, 0 and is shaded in below the line. y < −2x + 6 y ≤ x + 2 y ≤ −2x + 6 y < x + 2 y < 2 over 3x − 2 y ≥ 2x + 2 None of the above

Respuesta :

(0,2)(-2,0)
slope = (0 - 2) / -2 - 0) = -2/-2 = 1
(0,2)...x = 0 and y = 2
sub and find b, the y int
2 = 1(0) + b
2 = b
equation is : y = x + 2......solid line, means there is an equal sign....shaded below the line means less then....
ur inequality for this line is : y < = x + 2

(0,6)(3,0)
slope = (0 - 6) / (3 - 0) = -6/3 = -2

y = mx + b
slope(m) = -2
(0,6)...x = 0 and y = 6
sub and find b, the y int
6 = -2(0) + b
6 = b

ur equation is : y = -2x + 6....dashed line means there is no equal sign...and shading below the line means less then...
so ur inequality of this line is : y < -2x + 6

In summary, ur 2 inequalities are : y < = x + 2 and y < -2x + 6

To solve the problem we should know about the Equation of a line and slope of a line.

The equations are (y≤ x+2) and (y< -2x+6).

Given to us

  • One line is solid and goes through the points (0, 2), and (-2, 0) and is shaded below the line.
  • The other line is dashed, goes through the points (0, 6) and (3, 0), and is shaded below the line.

For the first line,

Given the points (0, 2), and (-2, 0), therefore,

[tex]x_2=0\\y_2=2\\x_1=-2\\y_2=0[/tex]

Substituting the values in the formula of the slope,

[tex]m=\dfrac{(y_2-y_1)}{(x_2-x_1)}[/tex]

[tex]m=\dfrac{2-0}{0-(-2)} = \dfrac{2}{2} = 1[/tex]

Substitute the value of slope and a point in the formula of line,

[tex]y = mx+c\\y_2 = mx_2+c\\2 = (1)0 +c\\c = 2[/tex]

Thus, the equation of the line is y=x+2, but as given the line is solid and is shaded below the line. therefore,

y≤ x+2

For the Second line,

Given the points (0, 6) and (3, 0), therefore,

[tex]x_2=0\\y_2=6\\x_1=3\\y_2=0[/tex]

Substituting the values in the formula of the slope,

[tex]m=\dfrac{(y_2-y_1)}{(x_2-x_1)}[/tex]

[tex]m=\dfrac{6-0}{0-3} = \dfrac{6}{-3} = -2[/tex]

Substitute the value of slope and a point in the formula of line,

[tex]y = mx+c\\y_2 = mx_2+c\\6 = (-2)0 +c\\c = 6[/tex]

Thus, the equation of the line is y=-2x+6, but as given the line is shaded below the line. therefore,

y< -2x+6

Hence, the equations are (y≤ x+2) and (y< -2x+6).

Learn more about Equation of Line:

https://brainly.com/question/2564656

Ver imagen ap8997154