The area of a rectangular garden is 30m^2
The length of the garden is (2x+3)m and the width is (x-1)m
a) use the information above to write an equation of the form ax^2+bx+c=0 where a,b, and c are integers.
b) work out the value of x to 1dp

Respuesta :

Answer:

a) [tex]2x^2+x-33=0[/tex]

b) [tex]x=3.8[/tex]

Step-by-step explanation:

We multiply the binomials

[tex](2x+3)(x-1)[/tex]

[tex]2x^2-2x+3x-3[/tex]

Simplify

[tex]2x^2+x-3[/tex]

Now we can set this equal to 30 since the area is 30

[tex]2x^2+x-3=30[/tex]

If. you notice in the a portion they want you to have the equation equal 0 so we subtract 30 on bot sides

[tex]2x^2+x-33=0[/tex]

We answered the A portion so now to find x we use the quadratic formula

[tex]\frac{-b+/-\sqrt{b^2-4(a)(c)} }{2a}[/tex]

Now enter what we know (we will do plus sign first

[tex]\frac{-1+\sqrt{1^2-4(2)(-33)} }{2(2)}[/tex]

Simplify

[tex]\frac{-1+\sqrt{1+264} }{4}[/tex]

[tex]\frac{-1+\sqrt{265} }{4} \\\\\frac{-1+16.2788}{4}[/tex]

[tex]3.8[/tex]

Now we do the subtract

[tex]\frac{-1-16.2788}{4}[/tex]

[tex]-4.3[/tex]

Since a side can't be negative 3.8 is the answer

I hope this helps