Respuesta :

Xaioo

Answer:

x = -8, y = -4, z = 9

Step-by-step explanation:

Certainly! To solve the system of linear equations, we need to find the values of x, y, and z that satisfy all three equations.

The given equations are:

1) -3x + 3y = 12

2) -3x + 4y + z = 17

3) 3x + 3y + 4z = 19

To solve this system of equations, we can proceed as follows:

From the first equation:

-3x + 3y = 12

x = (3y - 12) / -3

Next, we will substitute the value of x into the second and third equations:

In the second equation:

-3((3y - 12) / -3) + 4y + z = 17

3(y - 4) + 4y + z = 17

3y - 12 + 4y + z = 17

7y - 12 + z = 17

7y + z = 29

In the third equation:

3x + 3y + 4z = 19

3((3y - 12) / -3) + 3y + 4z = 19

3(y - 4) + 3y + 4z = 19

3y - 12 + 3y + 4z = 19

6y - 12 + 4z = 19

6y + 4z = 31

Now we have two equations:

1) 7y + z = 29

2) 6y + 4z = 31

From here, we can solve for y and z. After finding y and z, we can substitute them back into the equation x = (3y - 12) / -3 to find the value of x. Finally, we get:

x = -8, y = -4, z = 9

So, the solution to the system of linear equations is:

x = -8, y = -4, z = 9

msm555

Answer:

[tex]\sf x = \dfrac{3}{2}[/tex]

[tex]\sf y = \dfrac{11}{2}[/tex]

[tex]\sf z = -\dfrac{1}{2}[/tex]

Step-by-step explanation:

Let's solve the system of equations using the substitution method:

[tex]\sf \begin{cases} -3x + 3y = 12 \\ -3x + 4y + z = 17 \\ 3x + 3y + 4z = 19 \end{cases} [/tex]

From the first equation, we can express [tex]\sf x[/tex] in terms of [tex]\sf y[/tex]:

[tex]\sf -3x + 3y = 12 [/tex]

[tex]\sf -3x = -3y + 12 [/tex]

[tex]\sf x = y - 4 [/tex]

Now, substitute [tex]\sf x[/tex] into the second equation:

[tex]\sf -3(y - 4) + 4y + z = 17 [/tex]

[tex]\sf -3y + 12 + 4y + z = 17 [/tex]

[tex]\sf y + z = 5 [/tex]

Now, substitute [tex]\sf y[/tex] from the above result into the third equation:

[tex]\sf 3(y - 4) + 3y + 4z = 19 [/tex]

[tex]\sf 3y - 12 + 3y + 4z = 19 [/tex]

[tex]\sf 6y + 4z = 31 [/tex]

Now, we have two equations:

1. [tex]\sf y + z = 5[/tex]

2. [tex]\sf 6y + 4z = 31[/tex]

From equation (1), we can express [tex]\sf y[/tex] in terms of [tex]\sf z[/tex]:

[tex]\sf y = 5 - z [/tex]

Now, substitute [tex]\sf y[/tex] into equation (2):

[tex]\sf 6(5 - z) + 4z = 31 [/tex]

[tex]\sf 30 - 6z + 4z = 31 [/tex]

[tex]\sf -2z = 1 [/tex]

[tex]\sf z = -\dfrac{1}{2} [/tex]

Now that we have [tex]\sf z = -\dfrac{1}{2}[/tex], substitute [tex]\sf z[/tex] into equation (1) to find [tex]\sf y[/tex]:

[tex]\sf y - \dfrac{1}{2} = 5 [/tex]

[tex]\sf y = \dfrac{11}{2} [/tex]

Finally, substitute [tex]\sf y[/tex] and [tex]\sf z[/tex] back into the expression for [tex]\sf x[/tex] we found earlier:

[tex]\sf x = \dfrac{11}{2} - 4 [/tex]

[tex]\sf x = \dfrac{3}{2} [/tex]

So, the solution is [tex]\sf x = \dfrac{3}{2}[/tex], [tex]\sf y = \dfrac{11}{2}[/tex], and [tex]\sf z = -\dfrac{1}{2}[/tex].

Ver imagen msm555