Respuesta :

Answer:sin(sin(x)) + C.

Step-by-step explanation:

To integrate sin(x)cos(sinx), we can use the substitution u = sin(x). Then, du/dx = cos(x) and dx = du/cos(x). Substituting these values, we get:

∫sin(x)cos(sinx)dx

= ∫cos(u)du

= sin(u) + C

= sin(sin(x)) + C

Therefore, the integration of sin(x)cos(sinx) is sin(sin(x)) + C.