Find the position vector "r(t)" given the velocity "v(t) = eti + 6cos(2t)j + 2k" and the initial position vector "r(0) = 2i - 2j + 3k".
a) r(t) = (et + 2)i - (3sin(2t) + 2)j + (t² + 3)k
b) r(t) = (et - 2)i + (3sin(2t) + 2)j - (t² + 3)k
c) r(t) = (et + 2)i + (3sin(2t) - 2)j + (t² - 3)k
d) r(t) = (et - 2)i - (3sin(2t) - 2)j - (t^2 - 3)k