Prove the given property of the Fibonacci numbers directly from the definition
Can someone show me how we get from This: F(n) = 3F(n - 3) + 2F(n - 4) for n ≥ 5
To this: F(n) = F(n - 2) + F(n - 1) = 3F(n - 4) + F(n - 3)₄ + 3F(n - 3) + F(n - 2)₄ = F(n - 4) + 2F(n - 3) + F(n - 2) = F(n - 4) + 2F(n - 3) + 3F(n - 4) + F(n - 3)₄ = 3F(n - 3) + 2F(n - 4).