Using the principle of mathematical induction, show that
∑²ₖ₀ (2k + 1)² = (n+1)(4n² + 8n + 3 )/3, for all n E N

Respuesta :

Answer:

We will prove the given statement using the principle of mathematical induction.

First, we will establish the base case when n = 0:

∑²ₖ₀ (2k + 1)² = (0+1)(4(0)² + 8(0) + 3)/3

= 1(0+0+3)/3

= 3/3

= 1

So the statement holds true for n = 0.

Now, let's assume that the statement is true for some arbitrary positive integer k. That is,

∑²ₖ₀ (2k + 1)² = (k+1)(4k² + 8k + 3)/3

Now, we will prove that the statement holds true for k+1.

We need to prove that:

∑²ₖ₀ (2(k+1) + 1)² = ((k+1)+1)(4(k+1)² + 8(k+1) + 3)/3

Expanding the left side:

(2(k+1) + 1)² + ∑²ₖ₁ (2k + 1)²

= (2k + 3)² + ∑²ₖ₀ (2k + 1)²

= 4k² + 12k + 9 + ∑²ₖ₀ (2k + 1)²

= 4k² + 8k + 4k + 9 + ∑²ₖ₀ (2k + 1)²

= 4k² + 8k + 3 + (4k + 1) + ∑²ₖ₀ (2k + 1)²

= 4k² + 8k + 3 + (4k + 1) + (k+1)(4k² + 8k + 3 )/3      [Using our assumption]

= (k+2)(4k² + 8k + 3)/3 + (k+1)(4k² + 8k + 3 )/3

= ((k+2)(4k² + 8k + 3) + 3(k+1)(4k² + 8k + 3))/(3*1)

= (4k³ + 12k² + 9k + 8k² + 24k + 12 + 12k² + 36k + 27)/3

= (4k³ + 20k² + 72k + 27)/3

= ((k+2)(4(k+1)² + 8(k+1) + 3))/3

Thus, the statement holds true for k+1.

By the principle of mathematical induction, the statement holds true for all n ∈ N.