Determine whether or not f is a conservative vector field. if it is, find a function f such that f = ∇f. if it is not, enter none. f(x, y) = (2x − 4y) i + (−4x + 10y − 9) j

Respuesta :

[tex]\mathbf f(x,y)=(2x-4y)\,\mathbf i+(-4x+10y-9)\,\mathbf j[/tex]

is conservative if

[tex]\dfrac{\partial(2x-4y)}{\partial y}=\dfrac{\partial(-4x+10y-9)}{\partial x}[/tex]

It's clear that this is true, since both partial derivatives reduce to -4, so [tex]\mathbf f[/tex] is indeed a conservative vector field.

Since [tex]\mathbf f(x,y)[/tex] is conservative, there must be some scalar function [tex]f(x,y)[/tex] such that

[tex]\nabla f(x,y)=\dfrac{\partial f}{\partial x}\,\mathbf i+\dfrac{\partial f}{\partial y}\,\mathbf j=\mathbf f(x,y)[/tex]
[tex]\implies\dfrac{\partial f}{\partial x}=2x-4y[/tex]

Integrating with respect to [tex]x[/tex] yields

[tex]\displaystyle\int\frac{\partial f}{\partial x}\,\mathrm dx=f(x,y)=x^2-4xy+g(y)[/tex]

and differentiating with respect to [tex]y[/tex] yields

[tex]\dfrac{\partial f}{\partial y}=-4x+g'(y)=-4x+10y-9[/tex]
[tex]\implies g'(y)=10y-9[/tex]
[tex]\implies g(y)=\displaystyle\int g'(y)\,\mathrm dy=5y^2-9y+C[/tex]

Thus the scalar potential of [tex]\mathbf f(x,y)[/tex] is

[tex]f(x,y)=x^2-4xy+5y^2-9y+C[/tex]

where [tex]C[/tex] is an arbitrary constant.