Answer:
b = 90°
c = 80°
d = 100°
Step-by-step explanation:
Since the Co-interior angles of the parallelogram are supplementary.
So,
(b-10)° + (b+10)° = 180°
Combine like terms:
b+b -10+10= 180°
2b = 180°
Divide both sides by 2.
[tex]\dfrac{2b}{b}=\dfrac{180^\circ}{2}[/tex]
b = 90°.
Similarly:
d + (b-10)° = 180°
Substitute the value of b.
d + (90-10)° = 180°
d + 80° = 180°
Subtract 80° on both sides:
d + 80° -80° = 180° - 80°
d = 100°.
Similarly:
d + c = 180°
Substitute the value of d.
100° + c = 180°
Subtract 100° on both sides:
100° + c -100° = 180° - 100°
c = 80°
So, the values of variables are:
b = 90°
c = 80°
d = 100°