Respuesta :

Answer:

Assuming the variable is included under the radical,

-40k²√(10)

Step-by-step explanation:

[tex](-2\sqrt{20k})(5\sqrt{8k^3})[/tex]

First we will simplify the first factor,

[tex]-2\sqrt{20k}[/tex]

We will write 20 as a product of factors:

[tex]-2\sqrt{4*5k}[/tex]

We know the square root of 2 is 2, so we pull a 2 out:

[tex]-2(2)\sqrt{5k}\\\\=-4\sqrt{5k}[/tex]

Now we will simplify the second factor,

[tex]5\sqrt{8k^3}[/tex]

We will rewrite 8 as a product of factors, as well as the variable:

[tex]5\sqrt{2*4*k^2*k}[/tex]

The square root of 2 is 2, so we pull a 2 out.  Additionally, the square root of k² is k, so we pull that out:

[tex]5(2)(k)\sqrt{2k}\\\\=10k\sqrt{2k}[/tex]

This gives us the product

[tex](-4\sqrt{5k})(10k\sqrt{2k})[/tex]

Multiplying the coefficients, we have

[tex]-4(10k)(\sqrt{5k})(\sqrt{2k})\\\\=-40k(\sqrt{5k})(\sqrt{2k})[/tex]

Multiplying the two radicals, we have

[tex]-40k\sqrt{5k*2k}\\\\-40k\sqrt{10k^2}[/tex]

The square root of k² is k, so we pull a k out, leaving

[tex]-40k(k)\sqrt{10}\\\\=-40k^2\sqrt{10}[/tex]

The equivalent expression of [tex](-2\sqrt{20k})(5\sqrt{8k^3})[/tex] is [tex]-40k^2\sqrt{10}[/tex]

The product expression is given as:

[tex](-2\sqrt{20k})(5\sqrt{8k^3})[/tex]

Rewrite the above expression as:

[tex](-2\sqrt{20k})(5\sqrt{8k^3}) = (-2\sqrt{20k}) * (5\sqrt{8k^3})[/tex]

Multiply the radicals

[tex](-2\sqrt{20k})(5\sqrt{8k^3}) = (-2\sqrt{20k * 8k^3}) * 5[/tex]

Multiply the constant factors

[tex](-2\sqrt{20k})(5\sqrt{8k^3}) = -10\sqrt{20k * 8k^3}[/tex]

SImplify the radical

[tex](-2\sqrt{20k})(5\sqrt{8k^3}) = -10\sqrt{160k^4}[/tex]

Express 160 as 10 * 16

[tex](-2\sqrt{20k})(5\sqrt{8k^3}) = -10\sqrt{10 * 16k^4}[/tex]

Evaluate the exponents

[tex](-2\sqrt{20k})(5\sqrt{8k^3}) = -10 * 4k^2\sqrt{10}[/tex]

[tex](-2\sqrt{20k})(5\sqrt{8k^3}) = -40k^2\sqrt{10}[/tex]

Hence, the equivalent expression of [tex](-2\sqrt{20k})(5\sqrt{8k^3})[/tex] is [tex]-40k^2\sqrt{10}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2972832