Given angle UVW is congruent to angle TSR, find the values of x, y, and z.
R
V
T
AJ
57
53
W
12x-7
U
3z + 14
50
S
5y-33
problem 6

Given angle UVW is congruent to angle TSR find the values of x y and z R V T AJ 57 53 W 12x7 U 3z 14 50 S 5y33 problem 6 class=

Respuesta :

Answer:

x = 5

y = 18

z = 12

Step-by-step explanation:

ΔUVW ≅ ΔTSR are congruent. So, corresponding sides are equal.

     UV =TS

12x - 7 = 53

Add 7 to both sides,

      12x = 53+ 7

      12x = 60

Divide both sides by 12,

         x = 60 ÷12

         [tex]\boxed{\bf x= 5}[/tex]

~~~~~~~~~~~~~~~~~~~~~~~~~~~``

SR = VW

5y - 33 = 57

Add 33 to both sides,

    5y = 57 + 33

    5y = 90

Divide both sides by 5,

       y = 90 ÷ 5

     [tex]\boxed{\bf y = 18}[/tex]

~~~~~~~~~~~~~~~~~~~~~`

      UW = TR

3z + 14 = 50

Subtract 14 from both sides,

        3z = 50 -14

        3z = 36

Divide both sides by 3,

         z = 36 ÷ 3

         [tex]\boxed{\bf z = 12}[/tex]