Diberikan bilangan asli 3,5,8,12,17,23,30,38,47..... rancang suatu formula untuk mencari suku ke 400 dan lanjutkan dgn induksi matematika

Respuesta :

google translate - indonesian:

"Given the original numbers design a formula to find the 400th term and continue (prove) with mathematical induction"

Let [tex]u_n[/tex] represent the n'th term of the sequence, that is

 [tex]u_1[/tex] is the first term,  [tex]u_2[/tex] the second term and so on...

notice that :

 [tex]u_1=3[/tex]

 [tex]u_2=3+2[/tex]

 [tex]u_3=3+2+3[/tex]

 [tex]u_4=3+(2+3+4)[/tex]

 [tex]u_5=3+(2+3+4+5)[/tex]

so clearly

  [tex]u_n=3+(2+3+4+5...+n)=2+(1+2+3+...+n)[/tex]

Recall the famous Gauss formula for addition of the first consecutive n natural numbers: 1+2+3+...(n-1)+n=n(n+1)/2

then, the formula for u_n is:

[tex]u_n=2+(1+2+3+...+n)=2+ \frac{n(n+1)}{2} [/tex]

for example, the 5th term is :

[tex]u_5=2+ \frac{5(5+1)}{2}=2+15=17[/tex]


Proof by induction.

step 1
[tex]u_1=2+ \frac{1(1+1)}{2}=2+1=3[/tex], true

step2

assume true for n=k, that is assume [tex]u_k=2+ \frac{k(k+1)}{2}[/tex]

step 3

verify for n=k+1, that is verify that [tex]u_k_+_1=2+ \frac{(k+1)(k+2)}{2} [/tex].


[tex]u_k_+_1=u_k+k+1}[/tex] because each nth term of the sequence is clearly its previous term +n

for example the fourth term 12, is the third term +4.

the fifth term, 17, is the fourth term 12 + 5 and so on...

also, by our assumption [tex]u_k=2+ \frac{k(k+1)}{2}[/tex]

so:

[tex]u_k_+_1=u_k+k+1=2+ \frac{k(1+1)}{2}+k+1=2+\frac{k(1+1)}{2}+ \frac{2(k+1)}{2}[/tex]
factorizing k+1

[tex]=2+ \frac{(k+1)((k+2)}{2} [/tex]

which is what we needed to show.


Answer: [tex]u_n=2+ \frac{n(n+1)}{2} [/tex]