Respuesta :
Maximum is when pi / 2t = 1 so that's 33-20 = 13 degrees
minimum when pi/2t = -1 - that gives -33-20 = -53 degrees
Its C
Answer:
C. Maximum: 13°; minimum: −53°; period: 4 hours
Step-by-step explanation:
The function modelling the temperature with respect to time is,
[tex]f(t)=33\sin (\frac{\pi}{2}t)-20[/tex]
It is required to find the maximum and minimum value of the temperature.
Since, we know,
[tex]-1\leq \sin x\leq 1[/tex] for all values of x.
Then, [tex]-1\leq \sin (\frac{\pi}{2}t)\leq 1[/tex] for all values of t.
Thus, we get,
Maximum value is obtained when [tex]\sin (\frac{\pi}{2}t)=1[/tex]
That is, [tex]\sin (\frac{\pi}{2}t)=1[/tex], [tex]f(t)=33-20=13[/tex].
So, maximum temperature is 13°
Minimum value is obtained when [tex]\sin (\frac{\pi}{2}t)=-1[/tex]
That is, [tex]\sin (\frac{\pi}{2}t)=1[/tex], [tex]f(t)=-33-20=-53[/tex].
So, minimum temperature is -53°
Also, we have,
If the function f(x) has period P, then the function f(bx) will have period [tex]\frac{P}{|b|}[/tex].
Since, [tex]\sin x[/tex] has period [tex]2\pi[/tex], then the given function have period [tex]\frac{2\pi }{\frac{\pi}{2}}[/tex] = 4.
So, entire cycle takes 4 hours.
Thus, option C is correct.