Respuesta :

[tex]arc \ length= \pi r ( \frac{C}{180} ) \ \ \ \ [C= central \ angle, \ r=radius, \pi =3.14] \\ \\ arcXY=3.14*23 *\frac{120}{180} \approx 48 \ cm[/tex]

Answer:

Option A, 48°

Step-by-step explanation:

In the given circle radius = 23 cm

and angle inscribed at the center = 120°

By definition of length of arc XY = rθ

m(arc xy) = [tex]\frac{23\times 120\Pi }{180}[/tex]

[tex]\frac{23\times 2(3.14)}{3}[/tex]

= 48.15° ≈ 48°

Option A is the answer.