Respuesta :

Answer:

[tex]\frac{\cot x}{1+\csc x}=\frac{\csc x-1}{\cot x}[/tex]

Step-by-step explanation:

We want to verify the identity:

[tex]\frac{\cot x}{1+\csc x}=\frac{\csc x-1}{\cot x}[/tex]

Let us take the LHS and simplify to get the LHS.

Express everything in terms of the cosine and sine function.

[tex]\frac{\cot x}{1+\csc x}=\frac{\frac{\cos x}{\sin x} }{1+\frac{1}{\sin x} }[/tex]

Collect LCM

[tex]\frac{\cot x}{1+\csc x}=\frac{\frac{\cos x}{\sin x} }{\frac{\sin x+1}{\sin x} }[/tex]

We simplify the RHS to get:

[tex]\frac{\cot x}{1+\csc x}=\frac{\cos x}{\sin x+1}[/tex]

We rationalize to get:

[tex]\frac{\cot x}{1+\csc x}=\frac{\cos x(\sin x-1)}{(\sin x+1)*(\sin x-1)}[/tex]

We expand to get:

[tex]\frac{\cot x}{1+\csc x}=\frac{\cos x(\sin x-1)}{\sin^2 x-1}[/tex]

Factor negative one in the denominator:

[tex]\frac{\cot x}{1+\csc x}=\frac{\cos x(\sin x-1)}{-(1-\sin^2 x)}[/tex]

Apply the Pythagoras Property to get:

[tex]\frac{\cot x}{1+\csc x}=\frac{\cos x(\sin x-1)}{-\cos^2 x}[/tex]

Simplify to get:

[tex]\frac{\cot x}{1+\csc x}=\frac{-(\sin x-1)}{\cos x}[/tex]

Or

[tex]\frac{\cot x}{1+\csc x}=\frac{1-\sin x}{\cos x}[/tex]

Divide both the numerator and denominator by sin x

[tex]\frac{\cot x}{1+\csc x}=\frac{\frac{1}{\sin x}-\frac{\sin x}{\sin x}}{\frac{\cos x}{\sin x}}[/tex]

This finally gives:

[tex]\frac{\cot x}{1+\csc x}=\frac{\csc x-1}{\cot x}[/tex]